GENERAL CHEMISTRY STANDARD 2.9

ISOTOPES AND ATOMIC MASS

- Atoms of the same element that have different numbers of neutrons
 - Isotopes have the same number of protons and electrons
 - Some elements have few isotopes, others have dozens
- The atomic mass for an element on the Periodic Table is the average atomic mass of all natural isotopes of the element.
 - Multiply the atomic mass of each isotope by its percent abundance
 - Make sure the percent abundance is in decimal form
 - All of the percent abundances should add up to 1.0 (within rounding error)
 - Add all of the products together to get the average atomic mass of the element
 - Be sure to follow significant figure rules for both the multiplication and addition parts!

2.9: Calculate the atomic mass of a given sample with a given percent abundance, and vice versa

ATOMIC MASS CALCULATION EXAMPLE

• Calculate the atomic mass of silicon. The three silicon isotopes have atomic masses and relative abundances of 27.9769 amu (92.2297%), 28.9765 amu (4.6832%), and 29.9738 amu (3.0872%).

```
27.9769 x 0.92297 = 25.822 amu

28.9765 x 0.046832 = 1.3570 amu

29.9738 x 0.030872 = 0.92341 amu

25.822

1.3570

+ 0.92341

28.102 amu
```

ATOMIC MASS CALCULATION EXAMPLE

 Calculate the atomic mass of lead. The four lead isotopes have atomic masses and relative abundances of 203.973 amu (1.4%), 205.974 amu (24.1%), 206.976 amu (22.1%), and 207.977 amu (52.4%).

```
203.973 x 0.014 = 2.9 amu

205.974 x 0.241 = 49.6 amu

206.976 x 0.221 = 45.7 amu

207.977 x 0.524 = 109 amu

2.9

49.6

45.7

+ 109

208 amu
```