GENERAL CHEMISTRY STANDARD 7.5

7.5: Identify a compound's empirical formula and calculate the molecular formula from the empirical formula and other data

DEFINITIONS

- Empirical Formula: The simplest, whole-number atom ratio of atoms in a formula
- Molecular Formula: The actual number of each type of atom that exists in one molecule of a substance
 - A compound's empirical formula can be determined using percent composition data
 - Additional data is needed to determine a compound's molecular formula

 Benzene is a dangerous organic compound. The molecular weight of benzene is 78 g/mol and it has a percent composition of 92.2% carbon and 7.8% hydrogen by mass. Find the empirical and molecular formulas of benzene.

First, assume a 100. g sample, resulting in 92.2 g of carbon and 7.8 g of hydrogen.

Next, convert these two masses to moles:

92.2 g C	1 mol C	7.00 m al C	
	12.00 g C	= 7.68 moi C	
7.8 g H	1 mol C	– 7 72 mol H	
	1.01 g H		

Now, divide the mole amounts out to determine the ratio:

7.68 / 7.72 ~ 1 So the empirical formula is CH

7.5: Identify a compound's empirical formula and calculate the molecular formula from the empirical formula and other data

EXAMPLE CONTINUED

Now calculate the molecular weight of the empirical formula.

Carbon:	12.00 g	x 1 atom	12.00 g
Hydrogen:	1.01 g	x 1 atom	+ 1.01 g

13.01 g

Now, divide the molecular weight of benzene by the molecular weight of the empirical formula:

78 g / 13.01 g = 5.995 ~ 6

So multiply each of the atoms in the empirical formula by six to get the molecular formula:

 C_6H_6

 Glucose has a molecular weight of 180 g/mol and a percent composition of 40.0% carbon, 6.72% hydrogen, and 53.3% oxygen by mass. Determine the empirical and molecular formulas.

First, assume a 100. g sample, resulting in 40.0 g of carbon, 6.72 g hydrogen, and 53.3 g of oxygen.

Next, convert these three masses to moles:

53.3 g C	1 mol O	-333 mol O
	15.99 g O	- 3.33 mor O
40.0 g C	1 mol C	
	12.00 g C	= 3.33 moi C
6.72 g H	1 mol C	6 65 mol H
	1.01 g H	

Now, divide all mole amounts by the smallest mole amount, 3.33 mol in this case: 4.44 / 3.33 = 1.00 mol O3.33 / 3.33 = 1.00 mol C $6.65 / 3.33 = 1.99 \sim 2 \text{ mol H}$ So the empirical formula is CH₂O

7.5: Identify a compound's empirical formula and calculate the molecular formula from the empirical formula and other data

EXAMPLE CONTINUED

Now calculate the molecular weight of the empirical formula.

Hydrogen:	1.01 g	x 2 atoms	2.02 g
Oxygen:	15.99 g	x 1 atom -	- 15.99 g
			30.01 g

Now, divide the molecular weight of glucose by the molecular weight of the empirical formula:

180 g / 30.01 g = 5.998 ~ 6

So multiply each of the atoms in the empirical formula by six to get the molecular formula:

 $C_6H_{12}O_6$